123 research outputs found

    At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) For sUAS Vegetation Mapping

    Get PDF
    Rapid advancement of drone technology enables small unmanned aircraft systems (sUAS) for quantitative applications in public and private sectors. The drone-mounted 5-band MicaSense RedEdge cameras, for example, have been popularly adopted in the agroindustry for assessment of crop healthiness. The camera extracts surface reflectance by referring to a pre-calibrated reflectance panel (CRP). This study tests the performance of a Matrace100/RedEdge-M camera in extracting surface reflectance orthoimages. Exploring multiple flights and field experiments, an at-sensor radiometric correction model was developed that integrated the default CRP and a Downwelling Light Sensor (DLS). Results at three vegetated sites reveal that the current CRP-only RedEdge-M correction procedure works fine except the NIR band, and the performance is less stable on cloudy days affected by sun diurnal, weather, and ground variations. The proposed radiometric correction model effectively reduces these local impacts to the extracted surface reflectance. Results also reveal that the Normalized Difference Vegetation Index (NDVI) from the RedEdge orthoimage is prone to overestimation and saturation in vegetated fields. Taking advantage of the camera\u27s red edge band centered at 717 nm, this study proposes a red edge NDVI (ReNDVI). The non-vegetation can be easily excluded with ReNDVI \u3c 0.1. For vegetation, the ReNDVI provides reasonable values in a wider histogram than NDVI. It could be better applied to assess vegetation healthiness across the site

    Potential of X-Band Images from High-Resolution Satellite SAR Sensors to Assess Growth and Yield in Paddy Rice

    Get PDF
    The comprehensive relationship of backscattering coefficient (σ0) values from two current X-band SAR sensors (COSMO-SkyMed and TerraSAR-X) with canopy biophysical variables were investigated using the SAR images acquired at VV polarization and shallow incidence angles. The difference and consistency of the two sensors were also examined. The chrono-sequential change of σ0 in rice paddies during the transplanting season revealed that σ0 reached the value of nearby water surfaces a day before transplanting, and increased significantly just after transplanting event (3 dB). Despite a clear systematic shift (6.6 dB) between the two sensors, the differences in σ0 between target surfaces and water surfaces in each image were comparable in both sensors. Accordingly, an image-based approach using the “water-point” was proposed. It would be useful especially when absolute σ0 values are not consistent between sensors and/or images. Among the various canopy variables, the panicle biomass was found to be best correlated with X-band σ0. X-band SAR would be promising for direct assessments of rice grain yields at regional scales from space, whereas it would have limited capability to assess the whole-canopy variables only during the very early growth stages. The results provide a clear insight on the potential capability of X-band SAR sensors for rice monitoring

    MODIS-Based Fractional Crop Mapping in the U.S. Midwest with Spatially Constrained Phenological Mixture Analysis

    Get PDF
    Since the 2000s, bioenergy land use has been rapidly expanded in U.S. agricultural lands. Monitoring this change with limited acquisition of remote sensing imagery is difficult because of the similar spectral properties of crops. While phenology-assisted crop mapping is promising, relying on frequently observed images, the accuracies are often low, with mixed pixels in coarse-resolution imagery. In this paper, we used the eight-day, 500 m MODIS products (MOD09A1) to test the feasibility of crop unmixing in the U.S. Midwest, an important bioenergy land use region. With all MODIS images acquired in 2007, the 46-point Normalized Difference Vegetation Index (NDVI) time series was extracted in the study region. Assuming the phenological pattern at a pixel is a linear mixture of all crops in this pixel, a spatially constrained phenological mixture analysis (SPMA) was performed to extract crop percent covers with endmembers selected in a dynamic local neighborhood. The SPMA results matched well with the USDA crop data layers (CDL) at pixel level and the Crop Census records at county level. This study revealed more spatial details of energy crops that could better assist bioenergy decision-making in the Midwest

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    Assessing Re-Composition of Xing’an Larch in Boreal Forests after the 1987 Fire, Northeast China

    Get PDF
    Xing’an larch, a deciduous coniferous species, is the zonal tree of the Greater Xing’an Mountains in Northeast China. In May 1987, a catastrophic fire broke out in the mountains and burned 1.3 million hectares of forests in 26 days. While studies have shown that forest greenness has come back to normal in certain years, the re-composition of this zonal species has not been studied after the 1987 fire. With a series of Landsat 8 OLI images acquired in 2013–2015, this study builds the Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) time series in a complete growing cycle. A decision tree is developed to classify tree species with an overall accuracy of 86.16% and Kappa coefficient of 0.80. The re-composition of Xing’an larch after the 1987 fire is extracted, and its variations in areas under different fire intensities are statistically analyzed. Results show that Xing’an larch comprises 17.52%, 26.20% and 33.19% of forests in burned areas with high, medium and low fire intensities, respectively. Even around 30 years after the 1987 fire, the composition of this zonal species in boreal forest has not been fully recovered in the Greater Xing’an Mountains. The Xing’an larch map extracted in this study could serve as base information for ecological and environmental studies in this south end of the boreal Eurasia

    Remote Sensing Derived Indices for Tracking Urban Land Surface Change in Case of Earthquake Recovery

    Get PDF
    The study of post-disaster recovery requires an understanding of the reconstruction process and growth trend of the impacted regions. In case of earthquakes, while remote sensing has been applied for response and damage assessment, its application has not been investigated thoroughly for monitoring the recovery dynamics in spatially and temporally explicit dimensions. The need and necessity for tracking the change in the built-environment through time is essential for post-disaster recovery modeling, and remote sensing is particularly useful for obtaining this information when other sources of data are scarce or unavailable. Additionally, the longitudinal study of repeated observations over time in the built-up areas has its own complexities and limitations. Hence, a model is needed to overcome these barriers to extract the temporal variations from before to after the disaster event. In this study, a method is introduced by using three spectral indices of UI (urban index), NDVI (normalized difference vegetation index) and MNDWI (modified normalized difference water index) in a conditional algebra, to build a knowledge-based classifier for extracting the urban/built-up features. This method enables more precise distinction of features based on environmental and socioeconomic variability, by providing flexibility in defining the indices’ thresholds with the conditional algebra statements according to local characteristics. The proposed method is applied and implemented in three earthquake cases: New Zealand in 2010, Italy in 2009, and Iran in 2003. The overall accuracies of all built-up/non-urban classifications range between 92% to 96.29%; and the Kappa values vary from 0.79 to 0.91. The annual analysis of each case, spanning from 10 years pre-event, immediate post-event, and until present time (2019), demonstrates the inter-annual change in urban/built-up land surface of the three cases. Results in this study allow a deeper understanding of how the earthquake has impacted the region and how the urban growth is altered after the disaster
    • 

    corecore